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Abstract

Global-stability theory is used to predict the onset of flow unsteadiness based on steady solutions of the Reynolds Aver-
aged Navier–Stokes equations. The stability problem is formulated for compressible flow at moderately-high Reynolds
numbers, using a turbulence model to provide closure for the averaged Reynolds stresses. The approach provides an effi-
cient method for predicting the occurrence of flow unsteadiness for problems of practical interests, and provides a useful
indicator for the legitimate range of application of the steady-flow equations. Numerical solutions are presented based on a
finite-difference approximation. The steady baseflow solution and the unsteady disturbance equations are solved using the
same grid. Results are presented for the onset of vortex shedding about a circular cylinder at low Reynolds numbers, and
for shock-induced transonic-buffet onset at high Reynolds numbers. The results for the onset of flow unsteadiness are in
very good agreement with experiments and unsteady calculations.
� 2006 Published by Elsevier Inc.
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1. Introduction

Predicting the demarcation between steady- and unsteady-flow conditions is a fundamental problem that is
critically important for many engineering flows, and for the efficient application of computational methods in
general. The onset of large-scale flow unsteadiness is characterized by fluctuating loads that can be detrimental
in engineering applications. Thus, engineering designs often require a prediction for the occurrence of these
undesirable flow conditions. To alleviate or control the unsteadiness, a physical understanding of the under-
lying mechanisms is required.

In Computational Fluid Dynamics (CFD), steady-state equations are often used to investigate flow phe-
nomena and to predict various integral quantities such as forces and moments. The solution of the steady-state
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equations is much more efficient than solving the time-accurate problem, thus enabling the consideration of
more-complex geometries. However, for some flow conditions the numerical representation of the steady-state
equations may exhibit poor convergence. This can be the result of inherent unsteadiness in the flow. The abil-
ity to predict the onset of an underlying unsteadiness could be a valuable aid when applying CFD to such
flows. At the very least, knowing the conditions for the onset of unsteadiness would enable an efficient switch
over to the unsteady equations.

One of the most challenging problems involving the onset of large-scale unsteadiness is transonic-buffet
onset on airplanes. At transonic speeds, a highly loaded wing will develop a strong compression shock – fol-
lowed by boundary-layer separation upstream of the wing trailing edge. In some cases, a very thin separation
bubble is created at the foot of the shock. At some point, as the loading is increased, the flow becomes highly
unsteady – characterized by an oscillating shock position. This unsteady forcing can lead to significant buffet-
ing of the airplane structure, thus limiting the airplane flight envelope.

Methods for predicting the onset of excess airplane buffeting (a structural response) are largely based on
empirical relationships. However, studies on two-dimensional airfoils show many of the characteristic fea-
tures associated with airplane buffeting. These airfoil studies serve as model problems for examining the
onset of buffet, by focusing on the origins of large-scale flow unsteadiness. One of the earlier studies of this
type was conducted by McDevitt and Okuno [1]. They examined the onset of unsteadiness on a NACA0012
airfoil undergoing a slow increase in angle of attack at constant Mach number. Meanwhile, this type of
investigation was conducted on supercritical SC(2)-0714 [2] and OAT15A [3] airfoils. These studies demon-
strate the existence of steady flow at lower angles of attack, giving way to large-scale buffeting above some
critical value.

Unsteady CFD has been used to study the flow-field buffet onset, with some degree of success. Bar-
akos and Drikakis [4] and Chung et al. [5] have analyzed the NACA0012 airfoil using the Unsteady
Reynolds Averaged Navier–Stokes (URANS) equations. The critical angle of attack predicted by Chung
et al. is in good agreement with the experiments of McDevitt and Okuno. The OAT15A airfoil has been
investigated by Deck [6] using both URANS and Detached Eddy Simulations (DES). The computational
results are in reasonable agreement with the experiments for post-critical conditions. However, the
URANS required an increased angle of attack (compared to the experiments) in order to achieve buf-
feting flow conditions.

The application of URANS to find buffet boundaries requires the time-accurate integration of the RANS
equations over a wide range of control parameters. For a moderately large design space (Reynolds number,
Mach number, angle of attack, etc.) this exercise is very computationally intensive. In addition, obtaining an
unsteady solution of the RANS equations is a subtle procedure that depends on the grid, the numerical
method, and the way in which the flow is initialized. Near the critical conditions for buffet onset, unsteady
disturbances amplify or decay over large time scales, further increasing the computational demands.

An attractive alternative to the URANS-based approach is to predict the onset of large-scale flow
unsteadiness based on global-stability theory. As described above, this type of approach would be very use-
ful for determining buffet boundaries in engineering. This capability would also be useful as an aid to the
application of fully unsteady CFD, since it could provide a demarcation of the parameter space where
unsteady calculations are required. The global-stability approach has been used to study a related problem
of vortex-shedding onset for the incompressible laminar flow about a cylinder [7–9]. This approach has also
been used to study a wide range of classic stability problems involving laminar basic states [10]. The appli-
cation to transonic buffet [11] requires a generalization of that approach to incorporate turbulent boundary
layers, compressibility, and the existence of shocks. This introduces a number of computational issues asso-
ciated with the numerical solution of the background steady flow and the associated eigenvalue problem for
the unsteady disturbance.

In this paper, we consider a generalized approach to predicting the onset of flow unsteadiness based on glo-
bal-stability theory. The theoretical formulation is presented in Section 2. Section 3 describes the numerical
method and the treatment of shocks. Results are presented in Section 4 for vortex shedding behind a circular
cylinder and for transonic buffet on a NACA0012 airfoil. These two problems provide a wide range in level of
complexity, from low-Reynolds-number laminar incompressible flow up to high-Reynolds-number turbulent
compressible flow.
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2. Theoretical formulation

2.1. Governing equations and turbulence modeling

We consider two-dimensional compressible flow, including relatively-high Reynolds numbers. The flow
is governed by the Reynolds Averaged Navier–Stokes equations (RANS), with the compressible form of
the Spalart–Allmaras (S–A) turbulence model [12] – including the compressibility correction [13] – used to
provide closure for the averaged Reynolds stresses. Here, we focus on flows that can be treated as either
laminar or ‘‘fully turbulent’’, which removes the need for the trip-term functions. This leads to a set of
five equations: continuity, streamwise momentum, transverse momentum, energy, and a modified eddy-vis-
cosity equation. These equations can be written in terms of the primitive variables, q ¼ fq; u; v; T ;~mg as
follows:
oq
ot
þ oðquÞ

ox
þ oðqvÞ

oy
¼ 0; ð2:1:1Þ
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Here q is the density, T is the temperature, and u, v are velocities in the x-, y-directions, respectively. R is the
specific gas constant, Cv and Cp are the specific heat capacities of the gas at constant volume and pressure,
respectively (both assumed to be constant), c ¼ Cp=Cv, and S is the magnitude of the strain tensor. The effec-
tive stress tensor is defined by the components
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and the effective dynamic viscosity leff and effective heat conductivity keff, are defined as
leff ¼ lðT Þ þ qmt; keff ¼
lðT Þ

Pr
þ qmt

Prt

: ð2:1:7Þ
Here l ¼ lðT Þ is the dynamic viscosity, Pr and Prt are the Prandtl number and the turbulent Prandtl num-
ber, respectively, and the eddy-viscosity mt is calculated using the S–A turbulence model [12], with the
functions
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where X is the vorticity magnitude, and d is the distance to the wall. The standard constants for the model are
as follows:
r ¼ 2=3; j ¼ 0:41; Cb1 ¼ 0:1355; Cb2 ¼ 0:622;

Cw1 ¼
Cb1

j2
þ ð1þ Cb2Þ

r
; Cw2 ¼ 0:3; Cw3 ¼ 2:0; Cv1 ¼ 7:1;

Ct3 ¼ 1:2; Ct4 ¼ 0:5; C5 ¼ 3:5:

ð2:1:9Þ
The boundary conditions imposed on the surface of the body are
u ¼ v ¼ 0;

oq
on
¼ oT

on
¼ 0;

~m ¼ 0;

ð2:1:10Þ
where o=on is a derivative normal to the surface and the density condition is derived from the momentum
equation. The far-field conditions used in the compressible computations involve not only the primary vari-
ables q; u; v; T ; ~m but also the Riemann invariants. These conditions, expressed in terms of the primary vari-
ables, are given as
I1 ¼ V n þ
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ðc� 1Þ ¼ kxuþ kyvþ 2

ðc� 1Þ
ffiffiffiffiffiffiffiffiffi
cRT

p
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cRT

p
;
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I4 ¼
RT
qc�1

:

ð2:1:11Þ
Here kx, ky are the local directional cosines of the boundary normal. These conditions are imposed on the sub-
sonic boundaries in the following way. On the inlet boundary, ~m and invariants I1, I3, I4 are given and I2 is
extrapolated from the computational domain. On the outlet boundary, ~m and I1, I3, I4 are extrapolated from
the computational domain and I2 is given.
2.2. Velocity decomposition

The state vector describing the total flow field can be decomposed into a steady state �q ¼ f�q; �u;�v; T ;�~mg and
an unsteady vector q0 ¼ fq0; u0; v0; T 0;~m0g, q ¼ �qþ q0. The vector �q is a solution to the steady form of Eqs.
(2.1.1)–(2.1.5) – that is with o�q=ot � 0. The steady-state RANS equations are normally re-written in conser-
vative form before solving them numerically.

For conditions close to steady state, the unsteady component q0 can be considered a small perturbation to
the vector �q. Substituting q ¼ �qþ q0 into Eqs. (2.1.1)–(2.1.5), canceling the terms governing �q, and linearizing
the equations in terms of q0 yields:
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Eqs. (2.2.1)–(2.2.5) can be rewritten in the simplified operator form
o
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J.D. Crouch et al. / Journal of Computational Physics 224 (2007) 924–940 929
The linear operator M contains the terms associated with the time derivatives from the original Eqs. (2.1.1)–
(2.1.5). The linear operator N �q consists of linear terms from the original equations, and the terms generated by
nonlinear interactions between �q and q0.
2.3. Modal analysis

The unsteady perturbation to the steady-state flow �qðx; yÞ can be represented by time-harmonic modes of
the form
q0ðx; y; tÞ ¼ q̂ðx; yÞ � expð�ixtÞ: ð2:3:1Þ
The function q̂ describes the mode shape, and x is the frequency. In general, both q̂ and x can be complex, so
the physical solution is taken as the real part of Eq. (2.3.1). Substituting (2.3.1) into (2.2.8) yields a system
governing the modal perturbation. Multiplying this system by the matrix W, where
W ¼

1 0 0 0 0

� �u
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1
�q 0 0 0

� �v
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�q 0 0

� T
�q þ �u2þ�v2

2Cv�q � �u
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Cv�q
1

Cv�q 0

� �~m
�q 0 0 0 1

q

0BBBBBBB@

1CCCCCCCA ð2:3:2Þ
yields the final system of equations for q̂ and x
�ixq̂þ Lð�qÞ � q̂ ¼ 0 ð2:3:3Þ

with L being a second-order differential operator.

The boundary conditions are obtained by introducing q ¼ �qþ q0 into the expressions (2.1.10) and canceling
the terms governing the steady state. Then substituting (2.3.1) for q0 yields the boundary conditions for q̂
û ¼ v̂ ¼ 0;

oq̂
on
¼ obT
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¼ 0;

~̂m ¼ 0:

ð2:3:4Þ
The expressions for the Riemann invariants (2.1.11) become
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�qc

 !
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ð2:3:5Þ
which yields the following far-field conditions for the inlet boundary:
bI 1 ¼ bI 3 ¼ bI 4 ¼ ~̂m ¼ 0;

obI 2

on
¼ 0;

ð2:3:6Þ
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and for the outlet boundary
obI 1

on
¼ obI 3

on
¼ obI 4

on
¼ o~̂m

on
¼ 0;bI 2 ¼ 0:

ð2:3:7Þ
Eqs. (2.3.3)–(2.3.7) describe an eigenvalue problem governing the complex frequency x and mode shape q̂.
This eigenvalue problem is solved numerically.
3. Numerical formulation

3.1. Finite-difference approximation

We first introduce a finite-difference grid with the total number of nodes N p ¼ Ni � Nj. The following one-
dimensional (‘‘global’’) numbering of the grid nodes is used:
n ¼ Njði� 1Þ þ j with n ¼ 1; . . . ;Np;

i ¼ 1; . . . ;N i; j ¼ 1; . . . ;Nj:
ð3:1:1Þ
Now, let the vector â with the dimension NV ¼ nvar � Np be the finite-difference analog of the perturbation
mode shape (nvar ¼ 5 is the number of the primary variables in the RANS equations)
â ¼ ½q̂11; q̂12; . . . ; q̂1Nj ; . . . ; q̂NiNj �
T

� ½q̂11; û11; v̂11; bT 11; ~̂m11; . . . ; q̂1Nj ; û1Nj ; v̂1Nj ; bT 1Nj ; ~̂m1Nj ; . . . ; q̂NiNj ; ûNiNj ; v̂NiNj ; bT NiNj ; ~̂mNiNj �
T
; ð3:1:2Þ
or, using global node numbering (3.1.1)
â ¼ ½q̂1; û1; v̂1; bT 1; ~̂m1; . . . ; q̂n; ûn; v̂n; bT n; ~̂mn; . . . ; q̂Np ; ûNp ; v̂Np ; bT Np ; ~̂mNp �
T
: ð3:1:3Þ
Then the finite-difference approximation of the system (2.3.3) and corresponding linearized boundary condi-
tions (2.3.4) and (2.3.5) can be presented in the following matrix form:
ð�ixT þ SÞ � â ¼ 0; ð3:1:4Þ

where the matrix S with the dimension NV is an approximation of the differential operator Lð�qÞ on the com-
putational grid.

The matrix T in (3.1.4) is diagonal (T ml ¼ 0 for m 6¼ l); its diagonal elements T mm are equal to 0 for all m

corresponding to the boundary points of the computational grid and for all other points T mm ¼ 1.
A similar formulation can be used for multi-block grids with global numbering extended to all blocks
n ¼
Xnb�1

k¼1

N ðkÞp þ N ðnbÞ
j ði� 1Þ þ j; ð3:1:5Þ
with N ðnbÞ
p ¼ N ðnbÞ

i � N ðnbÞ
j ; i ¼ 1; . . . ;N ðnbÞ

i ; j ¼ 1; . . . ;N ðnbÞ
j , nb ¼ 1; . . . ;N b – where Nb is the number of blocks.

Since the multi-block grids in the present work are overlapping, a specific boundary condition based on
interpolation for points on grid-block interfaces is used. The form of this boundary condition is the same
for both steady-flow and perturbation computations
â
i
ðnb1Þ
b

¼
X
i
ðnb2Þ
b

b
i
ðnb2Þ
b

â
i
ðnb2Þ
b

; ð3:1:6Þ
where iðnb2Þ
b are the indices of all points in the block nb2, which correspond to the point iðnb1Þ

b in the block nb1 and
b

i
ðnb2Þ
b

are the interpolation coefficients.

The specific form of the matrix S depends upon the approximation of the space derivatives in the differen-
tial operator Lð�qÞ. In the present work, the steady RANS equations are solved using Roe’s scheme [14] with
the third-order j scheme [15] for inviscid fluxes and a second-order central difference scheme for viscous and
heat fluxes. Convection terms in the S–A equation are approximated with the first-order upwind scheme. The



J.D. Crouch et al. / Journal of Computational Physics 224 (2007) 924–940 931
only modification of the scheme used for the solution of the system (2.3.3) is that, unlike the original Roe
scheme, the upwind finite-difference approximations are linearized and are based on the sign of the cell-face
normal component of the steady velocity.

Convective terms in the system (2.3.3) can be written in the following form:
oF
ox

� �
þ oG

oy

� �
¼ o

ox
ðAð�qÞ � q̂Þ þ o

oy
ðBð�qÞ � q̂Þ: ð3:1:7Þ
In curvilinear coordinates this becomes
oF
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þ oG

oy
¼ J

oeF
os
þ oeG

on

 !
; ð3:1:8Þ
where J is the Jacobian
J ¼ os
ox
� on
oy
� os

oy
� on
ox
: ð3:1:9Þ
Generalized fluxes eF ; eG are defined as
eF ¼ X nF þ Y nG ¼ ðX nAð�qÞ þ Y nBð�qÞÞ � q̂ ¼ eAð�qÞ � q̂;eG ¼ X sF þ Y sG ¼ ðX sAð�qÞ þ Y sBð�qÞÞ � q̂ ¼ eBð�qÞ � q̂; ð3:1:10Þ
where Xn, Yn, Xs, Ys are the metric coefficients
X n ¼
oy
on
; Y n ¼ �

ox
on
; X s ¼ �

oy
os
; Y s ¼

ox
os
: ð3:1:11Þ
The finite-difference formulation of Eq. (3.1.8) then has the form
oeF
os
þ oeG

on
¼ eF iþ1=2;j � eF i�1=2;j þ eGi;jþ1=2 � eGi;j�1=2

¼ eAð�qÞiþ1=2;j � q̂iþ1=2;j � eAð�qÞi�1=2;j � q̂i�1=2;j þ eBð�qÞi;jþ1=2 � q̂i;jþ1=2 � eBð�qÞi;j�1=2 � q̂i;j�1=2: ð3:1:12Þ
The central-difference scheme is based on the following expression for the cell face flux:
eAð�qÞiþ1=2;j � q̂iþ1=2;j ¼
1

2
eAþiþ1=2;j � q̂þiþ1=2;j þ eA�iþ1=2;j � q̂�iþ1=2;j

� �
: ð3:1:13Þ
The cell-face flux for upwind scheme has the form
eAð�qÞiþ1=2;j � q̂iþ1=2;j ¼
1

2
1� sign ð�usÞiþ1=2;j

� �� �eAþiþ1=2;j � q̂þiþ1=2;jþ
�

1� sign ð�usÞiþ1=2;j

� �� �eA�iþ1=2;j � q̂�iþ1=2;j

�
;

ð3:1:14Þ
where �us is the cell-face normal velocity component for the steady-state solution
�us ¼ X n�uþ Y n�v: ð3:1:15Þ

The order of approximation is dependent on the interpolation of vector q̂ and matrix eA on the cell-face

ðiþ 1=2; jÞ. The third-order upwind and fourth-order centered schemes used in the present work are based
on the following expressions:
q̂�iþ1=2;j ¼
Xiþ1

l¼i�1

a�l q̂l;j; q̂þiþ1=2;j ¼
Xiþ2

l¼i

aþl q̂l;j; ð3:1:16Þ

eA�iþ1=2;j ¼
Xiþ1

l¼i�1

a�l eAl;j; eAþiþ1=2;j ¼
Xiþ2

l¼i

aþl eAl;j; ð3:1:17Þ
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where
a�i�1 ¼ aþiþ2 ¼ �1=6;

a�i ¼ aþiþ1 ¼ 5=6;

a�iþ1 ¼ aþi ¼ 1=3:

ð3:1:18Þ
In order to reduce the numerical dissipation of the upwind differencing, we use a ‘‘hybrid’’ scheme which is
weighted between upwind and central differencing
DH ¼ aHD3u þ ð1� aHÞD4c; 0 6 aH 6 1: ð3:1:19Þ

The finite difference operators D3u and D4c correspond to the third-order upwind and fourth-order centered
schemes respectively and aH is the weighting constant. Results are presented for aH = 0, 1, and 0.2.

3.2. Treatment of shocks

In order to consider transonic flows with shock waves, some form of shock smoothing is required. An
unsteady perturbation to a flow field containing a shock can be expected to have a large response at the shock
location. As a shock is better resolved it will become thinner, and the unsteady response to a perturbation will
take the form of a delta function. A typical steady-flow solution captures the shock over two or three grid
points. Without smoothing, a linear perturbation to this flow field will exhibit ‘‘ringing’’ in the neighborhood
of the shock.

We perform shock smoothing after the steady flow is calculated. The smoothing is conducted in two steps.
First, the original solution to the steady RANS equations is smoothed over the entire computational domain,
resulting in a smoothed field �qsmooth. In the second step, the smoothed field is blended with the original field
�qoriginal according to the relationship
�qfinal ¼ ð1� SÞ�qoriginal þ S�qsmooth: ð3:2:1Þ

The blending function S takes a value of one at the shock, and smoothly transitions to zero away from the
shock. The width of the smoothing zone is confined to a narrow region around the shock, where the grid spac-
ing is very fine.

The flow-field smoothing during the first step is performed in the dominant flow direction, along grid lines.
The smoothing is done over NSC smoothing cycles. During each cycle, the flow variables are modified accord-
ing to
�qði; jÞ ¼ �qði; jÞ þ 0:5ci½�qðiþ 1; jÞ � 2�qði; jÞ þ �qði� 1; jÞ�; ð3:2:2Þ

where ci is a smoothing coefficient that controls the amount of smoothing per cycle. The field �qsmooth in (3.2.1)
is defined by the value of �q from (3.2.2) after NSC smoothing cycles. For all of the results presented in
this paper, ci ¼ 0:1. The effects of grid smoothing and the local grid spacing at the shock are considered in
Section 4.2.

3.3. Eigenvalue calculations

The eigenvalue problem (3.1.4) is solved using the implicitly restarted Arnoldi method [16], which is a mem-
ber of the Krylov subspace projection methods. After discretization, the matrix governing the eigenvalues is
large and sparse, with typical dimension Oð100; 000Þ. The Krylov methods are very efficient for calculating a
small set of eigenvalues for such large systems, while requiring minimal storage. Prior to solution, a spectral
transformation is used to transform the eigenvalues in the neighborhood of x* into extreme values for the sys-
tem. This is achieved using the ARPACK routines [16] with the shift-invert mode.

Instability, signifying the onset of unsteadiness, occurs when xi > 0. The eigenvalue calculations are
focused on the least-stable mode. The value of the prescribed frequency x�r is chosen based on experimental
data, where available, or based on the basic model scaling for a given type of unsteadiness. The prescribed
growth rate x�i is taken to be positive. By varying the prescribed frequency, a search can be made for all unsta-
ble modes over a given range.
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4. Results

The stability problem formulated in Sections 2 and 3 provides a general framework for predicting the onset
of flow unsteadiness for compressible flow including high Reynolds number flows. This approach is now
assessed by considering two example problems, which serve as limiting cases in terms of their level of complex-
ity. First, we consider vortex shedding for a circular cylinder. This is a low-Reynolds-number laminar-flow
condition at an essentially-incompressible Mach number. The second problem considered is transonic buffet
onset for a NACA0012 airfoil. This is a high-Reynolds-number turbulent-flow condition, which includes
shock waves.

The presented results are normalized using the following scales. The reference temperature T0 is equal to the
temperature in the incident flow, the reference length L0 is equal to 1 m, and the reference scales for velocity,
dynamic viscosity and density are defined as
V 0 ¼ M
ffiffiffiffiffiffiffiffiffiffi
cRT 0

p
;

l0 ¼ lðT 0Þ;
q0 ¼ Re l0

L0V 0
;

where M is the Mach number and Re is the Reynolds number.

4.1. Vortex shedding

Vortex shedding from a circular cylinder at low Reynolds numbers was one of the first problems considered
using concepts of global-instability analysis [7–9]. We revisit this problem as a simple test case for the current
formulation, and to provide updated estimates for the onset of instability. At low Reynolds numbers the flow
is laminar, so the state vector reduces to q ¼ fq; u; v; Tg. The Mach number is also small, and is taken to be
M ¼ 0:2.

A typical grid used for the circular-cylinder calculations has 240 points in both the radial and azmuthal
directions. The domain extends to 125 diameters. Contours of u-velocity for the steady flow around the cyl-
inder are shown in Fig. 1, for the Reynolds number Re ¼ UD=m ¼ 45. This flow is stable to small unsteady
perturbations. However, as the Reynolds number is increased the flow goes unstable – signifying the onset
of vortex shedding.

The eigenvalue problem (3.1.4) yields a large number of eigenvalues, but only a small number of these
are physically meaningful. We focus on the least-stable eigenmode as an indicator for the onset of unsteadi-
ness. A small number of modes are calculated in the neighborhood of x*, where x�i > 0. Physical modes are
distinguished from spurious modes by calculating the average eigenfunction amplitude at the far-field bound-
Fig. 1. Contours of the u-component of the mean velocity for the conditions: Re ¼ 45, M ¼ 0:2.
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ary (neglecting the wake region). The physical modes have a negligibly small amplitude in the far field com-
pared to the peak modal amplitude.

For this low-Mach-number flow, the instabilities can be calculated using the pure central-difference scheme
(aH ¼ 0), as well as the hybrid scheme (aH ¼ 0:2) or the upwind scheme (aH ¼ 1). Table 1 shows the most
unstable eigenvalue calculated with the different schemes for the conditions M ¼ 0:2, Re ¼ 60. Results are
given for several different grids, ranging from 6400 points up to 160,000 points. The results for the different
numerical schemes converge to the same result on the finest grid to within 4 significant digits. Results for a
significantly larger domain, extending to 200 diameters, differ by less than 0.5% for the most-unstable eigen-
value with a grid comparable to 240 · 240. All subsequent results are for the 125 diameter domain.

The mode shape for the least-stable eigenvalue is given in Fig. 2, for the 240 · 240 grid with Re ¼ 60. The
figure shows contours of the real part of the u-velocity component realðûÞ. The imaginary part of û has the
same form as the real part, except the maximum and minimum values occur at the location of the zeros in
realðûÞ. When the eigenfunction (with a large prescribed amplitude) is combined with the mean flow, the total
unsteady flow field shows the typical vortex-shedding pattern.

The Reynolds-number variation of the least-stable eigenmode is given in Fig. 3. Unsteadiness due to vortex
shedding is predicted to occur at Re ¼ 47, where xi crosses zero. This is in very good agreement with the exper-
imental results of Hammache and Gharib [17], which shows a critical value of Re � 47. This is also in good
agreement with the numerical simulations of Barkley and Henderson [18], which give a critical Reynolds num-
ber of Re � 46	 1. The original global-stability results of Jackson [7] showed a critical Reynolds number of
Re ¼ 45:4.

The frequency of unsteadiness is shown in Fig. 3(b), along with the experimental values taken from Wil-
liamson [19] and Hammache and Gharib [17]. The critical frequency is xr ¼ 0:728, which corresponds to a
Strouhal number of S ¼ xr=2p ¼ 0:116. The predictions are in very good agreement with the experiments near
Table 1
Eigenvalues for the circular cylinder with different grids at M ¼ 0:2, Re ¼ 60

Grid aH ¼ 0 aH ¼ 0:2 aH ¼ 1

80 · 80 0.7614, 0.0342 0.7603, 0.0331 0.7564, 0.0277
160 · 160 0.7434, 0.0425 0.7432, 0.0424 0.7425, 0.0418
240 · 240 0.7399, 0.0435 0.7398, 0.0435 0.7396, 0.0433
320 · 320 0.7388, 0.0438 0.7387, 0.0438 0.7386, 0.0437
400 · 400 0.7383, 0.0439 0.7383, 0.0439 0.7382, 0.0439

Comparison between the central-difference (aH ¼ 0), hybrid (aH ¼ 0:2), and upwind (aH ¼ 1) schemes.

Fig. 2. Contours of the real part of the u-velocity perturbation for the conditions: Re ¼ 60, M ¼ 0:2 (aH ¼ 0).
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the onset of unsteadiness. The original results of Jackson [7] gave a critical Strouhal frequency of S ¼ 0:136.
As the Reynolds number is increased beyond the critical value, the experiments show a rise in the frequency
that is not predicted by the theory. This is likely due to finite-amplitude effects that are neglected in the linear
theory.

Unsteady calculations are made using the NTS code [20], which is the code used for generating the steady-
state fields �q. The unsteady flow is started from a steady solution at Re ¼ 50. The temporal variation of the
v-velocity, measured at x=D ¼ 2, y=D ¼ 0, yields a frequency of 0.734 and a growth rate of 0.0096. The glo-
bal-stability theory predicts a frequency xr ¼ 0:735 and a growth rate of xi ¼ 0:0096 at Re ¼ 50; this is in
good agreement with the unsteady calculations, and the small differences are attributed to differences in
numerical discretization. A similar unsteady calculation at Re ¼ 70 yields a frequency of 0.739 and a growth
rate of 0.068. This compares well with the stability results, where xr ¼ 0:745 and xi ¼ 0:068. After the initial
growth of the unsteady fluctuations, the unsteady calculations yield a shedding frequency of 0.901 – in very
good agreement with the experiments (see Fig. 3). Overall, the global-stability theory is quite effective at pre-
dicting the onset and initial characteristics of vortex shedding.

4.2. Transonic buffet

To examine the potential for predicting transonic-buffet onset using the global-stability theory, we consider
the NACA0012 airfoil. This problem was considered earlier in the experiments of McDevitt and Okuno [1]
and in the unsteady calculations of Barakos and Drikakis [4] and Chung et al. [5]. The transonic flow around
a NACA0012 airfoil at an angle of attack a > 2
 exhibits a shockwave on the upper surface. As the angle of
attack is increased, the shock intensifies and the flow separates from the airfoil upper surface upstream of the
trailing edge. A further increase in the angle of attack results in the forward movement of the separation point
from the trailing edge toward the foot of the shock. When the angle of attack exceeds some critical value, the
flow becomes globally unsteady. The unsteadiness is characterized by a coupled modulation of the shockwave
and the separated shear layer.

The transonic-airfoil calculations are done at relatively high chord Reynolds numbers Re ¼ Uc=m, where the
boundary layers would typically be turbulent. For these flows the state vector is given by q ¼ fq; u; v; T ;~mg. To
capture the shock position (including small changes due to changes in a) a fine grid is required on the upper
surface of the airfoil. In this study, we refine the grid in the neighborhood of the of the shock with a chordwise
spacing of Dxs. A typical grid is shown in Fig. 4, where Dxs=c ¼ 0:0015.

Fig. 5 shows the Mach contours for the flow around the NACA0012 airfoil at Re ¼ 107, M ¼ 0:76, and
a ¼ 3:2 calculated using the grid of Fig. 4. At these conditions there is a strong shock at x=c � 0:45. To cal-
culate the stability of this flow, we smooth the shock as discussed in Section 3.2. Fig. 6 shows contours of pres-
sure in the neighborhood of the shock before smoothing, and after smoothing with N SC ¼ 160. The shock
occurs over 2 grid points prior to smoothing, but extends over 10 points after smoothing. After smoothing,
the variation of flow quantities across the shock is similar to experimental observations [21], except that
the shock thickness is several orders of magnitude too large.



Fig. 5. Mach number contours for the steady flow around the NACA0012 airfoil at the conditions: Re ¼ 107, M ¼ 0:76, a ¼ 3:2
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For Re ¼ 107, M ¼ 0:76 the flow at a ¼ 3:0 is stable to temporal perturbations. However, as the angle of
attack is increased the flow becomes less stable – as shown in Fig. 7. This figure shows the eigenvalues in
the neighborhood of x� ¼ ð0:30; 0:15Þ for three different angles of attack. For lower angles of attack, all
the modes are stable. At a � 3:03 the least stable eigenvalue crosses the real axis, signifying the onset of insta-
bility due to a Hopf bifurcation. A further increase in the angle of attack results in an increase in the instability
growth rate. The initial frequency of oscillation is xr ¼ 0:28. Calculations conducted with the same mean flow,
but without including the ~m perturbation equation, do not show any unstable modes near this angle of attack.

These results are based on N SC ¼ 160 and aH ¼ 0:2. The value of the hybrid-scheme weighting constant aH

is chosen based on inspection of the eigenmodes. If the numerical dissipation if too small (i.e. aH < 0:1), the
eigenmodes exhibit oscillations emanating from the shock. The eigenvalue dependence on aH is small com-
pared to other influences, such as the treatment of the shock. The effect of shock smoothing is discussed below.

The instability mode shape at Re ¼ 107, M ¼ 0:76, a ¼ 3:2 is shown in Fig. 8. The perturbation is concen-
trated around the shock and in the boundary layer downstream of the shock. The disturbance maximum at the
shock is roughly two orders of magnitude larger than in the rest of the flow. Qualitatively, the instability rep-
resents an oscillation of the shock position. The phase plot shows that as the shock moves downstream, the
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Fig. 7. Eigenvalues for Re ¼ 107, M ¼ 0:76 with different angles of attack a ¼ 3:0
; 3:1
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. Onset of instability occurs at a � 3:03.

Fig. 8. u-velocity magnitude and phase for the unsteady-mode eigenfunction. NACA0012 airfoil results at the conditions: Re ¼ 107,
M ¼ 0:76, a ¼ 3:2
 (aH ¼ 0:2).
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separated shear layer moves closer to the surface of the airfoil. When the shock moves forward, the shear layer
lifts off of the surface. This form of oscillation is in good agreement with the observations of McDevitt and
Okuno [1].

The stability results of Figs. 7 and 8 are based on the steady flow on a grid with Dxs=c ¼ 0:0015 and
NSC ¼ 160. The eigenvalue results are found to be sensitive to both the grid spacing at the shock, and the num-
ber of smoothing cycles. However, the eigenvalue results for different grid spacing and different levels of shock
smoothing collapse when plotted against the shock thickness �P ¼ maxx;yðDP Þ=maxx;yðoP=oxÞ; here DP is the
pressure jump across the shock and �P is nondimensionalized by the chord c. Eigenvalue results are shown in
Fig. 9, for four different grids with four different levels of smoothing: NSC ¼ 80, 160, 240, 320. Larger grid
spacing, or increased smoothing cycles, both lead to a thicker shock. The frequency is reduced with reduced
shock thickness, until a minimum is reached and then increases with reduced shock thickness. The growth-rate
variation is relatively flat for small shock thicknesses, but then shows a decrease with increasing shock
thickness.

The results at different angles of attack all vary in a similar way, such that the critical a for onset of unstead-
iness is not very sensitive to the shock thickness. Thus, the prediction of stability boundaries does not depend
strongly on the grid or the level of smoothing. However, the critical frequency does show some dependence on
these quantities. Comparing results with NSC ¼ 80 to results with no shock smoothing, the critical a changes
by less than 0.03� and the critical frequency varies by roughly 4%. This variation in frequency is considered
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insignificant compared to the potential nonlinear effects that can result from a moderate displacement of the
shock due to unsteadiness.

Fig. 10 shows the predicted buffet boundary for the NACA0012 airfoil at a Reynolds number of Re ¼ 107.
For a given Mach number, there is a critical angle of attack – above which the flow becomes unsteady. The
symbols show the experimental results of McDevitt and Okuno [1]. For most Mach numbers, the agreement
with the experiment is very good. At the highest Mach number the experiment shows a lower value for the
critical angle of attack. This motivated a search for other modes of instability, but no modes with a lower
acrit were found. The differences at the highest Mach numbers could be the result of an inadequate prediction
of the steady flow due, for example, to turbulence modeling. However, these differences could also be due to
experimental uncertainties. None-the-less, the overall agreement between the theory and experiment in Fig. 10
shows the stability theory to be an effective means for predicting the onset of transonic airfoil buffet.

5. Conclusions

Global-stability theory provides an effective and efficient means for predicting the onset of flow unsteadi-
ness. The initial unsteadiness results from the instability of an underlying steady-state flow condition. For low
Reynolds numbers, the underlying steady flow is laminar and the steady-state flow field is obtained by solving
the full Navier–Stokes equations. At higher Reynolds numbers, the boundary layers and separated shear lay-
ers can be turbulent. In this case, the RANS equations must be solved to determine the underlying steady-state
field.

The approach has been applied to two problems of practical interest: vortex shedding and transonic-buffet
onset. The vortex shedding occurs at a low Reynolds number, and has been analyzed using global-stability
analysis in earlier studies. Transonic buffet occurs at higher Reynolds numbers and requires the use of a tur-
bulence model. For transonic flows with shocks, shock smoothing is used to ensure a smooth modal response.
However, the conditions at which buffet onset occurs are found to be insensitive to the level of smoothing.
Thus, no smoothing is required for a simple identification of the buffet boundary. Results from the stability
theory are in good agreement with unsteady calculations and with experiments for both problems considered.
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